Recently published - More

Abstract

Claudin-low breast cancer is an aggressive subtype that confers poor prognosis and is found largely within the clinical triple-negative group of breast cancer patients. Here, we have shown that intrinsic and immune cell gene signatures distinguish the claudin-low subtype clinically as well as in mouse models of other breast cancer subtypes. Despite adaptive immune cell infiltration in claudin-low tumors, treatment with immune checkpoint inhibitory antibodies against cytotoxic T lymphocyte–associated protein 4 (CTLA-4) and programmed death receptor 1 (PD-1) were ineffective in controlling tumor growth. CD4+FoxP3+ Tregs represented a large proportion of the tumor-infiltrating lymphocytes (TILs) in claudin-low tumors, and Tregs isolated from tumor-bearing mice were able to suppress effector T cell responses. Tregs in the tumor microenvironment highly expressed PD-1 and were recruited partly through tumor generation of the chemokine CXCL12. Antitumor efficacy required stringent Treg depletion combined with checkpoint inhibition; delays in tumor growth were not observed using therapies that modestly diminished the number of Tregs in the tumor microenvironment. This study provides evidence that the recruitment of Tregs to the tumor microenvironment inhibits an effective antitumor immune response and highlights early Treg recruitment as a possible mechanism for the lack of response to immune checkpoint blockade antibodies in specific subtypes of cancer that are heavily infiltrated with adaptive immune cells.

Authors

Nicholas A. Taylor, Sarah C. Vick, Michael D. Iglesia, W. June Brickey, Bentley R. Midkiff, Karen P. McKinnon, Shannon Reisdorf, Carey K. Anders, Lisa A. Carey, Joel S. Parker, Charles M. Perou, Benjamin G. Vincent, Jonathan S. Serody

×

Abstract

Acute myelogenous leukemia (AML) frequently relapses after complete remission (CR), necessitating improved detection and phenotypic characterization of treatment-resistant residual disease. In this work, we have optimized droplet digital PCR to broadly measure mutated alleles of recurrently mutated genes in CR marrows of AML patients at levels as low as 0.002% variant allele frequency. Most gene mutations persisted in CR, albeit at highly variable and gene-dependent levels. The majority of AML cases demonstrated residual aberrant oligoclonal hematopoiesis. Importantly, we detected very rare cells (as few as 1 in 15,000) that were genomically similar to the dominant blast populations at diagnosis and were fully clonally represented at relapse, identifying these rare cells as one common source of AML relapse. Clinically, the mutant allele burden was associated with overall survival in AML, and our findings narrow the repertoire of gene mutations useful in minimal residual disease–based prognostication in AML. Overall, this work delineates rare cell populations that cause AML relapse, with direct implications for AML research directions and strategies to improve AML therapies and outcome.

Authors

Brian Parkin, Angelina Londoño-Joshi, Qing Kang, Muneesh Tewari, Andrew D. Rhim, Sami N. Malek

×

Abstract

Neural stem cells (NSCs) differentiate into both neurons and glia, and strategies using human NSCs have the potential to restore function following spinal cord injury (SCI). However, the time period of maturation for human NSCs in adult injured CNS is not well defined, posing fundamental questions about the design and implementation of NSC-based therapies. This work assessed human H9 NSCs that were implanted into sites of SCI in immunodeficient rats over a period of 1.5 years. Notably, grafts showed evidence of continued maturation over the entire assessment period. Markers of neuronal maturity were first expressed 3 months after grafting. However, neurogenesis, neuronal pruning, and neuronal enlargement continued over the next year, while total graft size remained stable over time. Axons emerged early from grafts in very high numbers, and half of these projections persisted by 1.5 years. Mature astrocyte markers first appeared after 6 months, while more mature oligodendrocyte markers were not present until 1 year after grafting. Astrocytes slowly migrated from grafts. Notably, functional recovery began more than 1 year after grafting. Thus, human NSCs retain an intrinsic human rate of maturation, despite implantation into the injured rodent spinal cord, yet they support delayed functional recovery, a finding of great importance in planning human clinical trials.

Authors

Paul Lu, Steven Ceto, Yaozhi Wang, Lori Graham, Di Wu, Hiromi Kumamaru, Eileen Staufenberg, Mark H. Tuszynski

×

Abstract

The histone H3K36 methyltransferase SETD2 is frequently mutated or deleted in a variety of human tumors. Nevertheless, the role of SETD2 loss in oncogenesis remains largely undefined. Here, we found that SETD2 counteracts Wnt signaling and its inactivation promotes intestinal tumorigenesis in mouse models of colorectal cancer (CRC). SETD2 was not required for intestinal homeostasis under steady state; however, upon irradiation, genetic inactivation of Setd2 in mouse intestinal epithelium facilitated the self-renewal of intestinal stem/progenitor cells as well as tissue regeneration. Furthermore, depletion of SETD2 enhanced the susceptibility to tumorigenesis in the context of dysregulated Wnt signaling. Mechanistic characterizations indicated that SETD2 downregulation affects the alternative splicing of a subset of genes implicated in tumorigenesis. Importantly, we uncovered that SETD2 ablation reduces intron retention of dishevelled segment polarity protein 2 (DVL2) pre-mRNA, which would otherwise be degraded by nonsense-mediated decay, thereby augmenting Wnt signaling. The signaling cascades mediated by SETD2 were further substantiated by a CRC patient cohort analysis. Together, our studies highlight SETD2 as an integral regulator of Wnt signaling through epigenetic regulation of RNA processing during tissue regeneration and tumorigenesis.

Authors

Huairui Yuan, Ni Li, Da Fu, Jiale Ren, Jingyi Hui, Junjie Peng, Yongfeng Liu, Tong Qiu, Min Jiang, Qiang Pan, Ying Han, Xiaoming Wang, Qintong Li, Jun Qin

×

Abstract

Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration.

Authors

Mariko Kuroda, Rieko Muramatsu, Noriko Maedera, Yoshihisa Koyama, Machika Hamaguchi, Harutoshi Fujimura, Mari Yoshida, Morichika Konishi, Nobuyuki Itoh, Hideki Mochizuki, Toshihide Yamashita

×

Abstract

Chromatin modification influences gene expression by either repressing or activating genes, depending on the specific histone mark. Chromatin structure can also influence alternative splicing of transcripts; however, the mechanisms by which epigenetic marks influence splicing are poorly understood. A report in the current issue of the JCI highlights the biological importance of the coordinated control of alternative pre-mRNA splicing by chromatin structure and transcriptional elongation. Yuan et al. found that mutation of the histone methyl transferase SEDT2 affects alternative splicing fates of several key regulatory genes, including those involved in Wnt signaling. As a consequence, loss of SEDT2 in the intestine aggravated Wnt/β-catenin signaling effects, thereby leading to colorectal cancer.

Authors

Alberto R. Kornblihtt

×

Abstract

Transplantation of human neural stem cells has long been proposed as a potential strategy for treating CNS injury and disease; however, application of this approach has had limited therapeutic benefit. Yet compared with rodents and other experimental mammals, humans have a relatively long time window for development of the brain and spinal cord. In this issue of the JCI, Lu and colleagues asked whether the results of neural stem cell transplantation might be improved by accommodating the protracted development of human neural cells. They used a rodent model of spinal cord injury, in which human neural progenitor cells were transplanted at the site of damage. While there was no observable benefit at early time points after transplantation, both anatomic and functional improvements in the injured animals emerged over the course of a year. In particular, the human progenitor cell population differentiated, matured, and integrated into the rodent spinal cords over a time frame that aligned with the normal development of these cells in humans. This study demonstrates that neural stem cells may offer significant therapeutic benefit after CNS injury; however, this process may take time and demands patience on the part of investigators, patients, and clinicians alike.

Authors

Steven A. Goldman

×


Advertisement

August 2017

127 8 cover

August 2017 Issue

On the cover:
An inflammation-induced barrier to the brain

In this issue of the JCI, Horng et al. observed a protective response to inflammation in the glia limitans of mice and in cultured human astrocytes. Increases in blood-brain barrier permeability provoked tight junction formation in glia limitans astrocytes, creating an inducible barrier to leukocyte and humoral infiltration. On the cover, primary human astrocytes (red) corral CD3+ T lymphocytes (blue) within a network of tight junctions after exposure to proinflammatory IL-1β. Image credit: Candice Chapouly.

×
Jci tm 2017 08

August 2017 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Transplantation

Series edited by Scott Palmer and Jonathan S. Serody

Organ and tissue transplantation are frequently life-extending procedures for patients with end-stage organ disease or hematological malignancies; however, the success of transplantation of organs and tissues to a recipient from a genetically non-identical donor is limited by immune-mediated complications, including rejection, graft dysfunction, graft-versus-host disease, and the side effects of preventing rejection. Despite over 100 years of research in this area, we are just now beginning to develop an in-depth understanding of the immune mechanisms that determine the success of allotransplantation. A detailed understanding of transplantation immunology will allow for better selection of donor/recipient pairs, the development of novel therapeutic strategies, and, ultimately, better outcomes. Reviews in this series explore the role of cytokines in both acute and chronic graft-versus-host disease; the effects of sterile inflammation, danger signals, and the inflammasome in solid organ transplantation; the mechanisms of humoral and cellular rejection; cell-based therapies to combat rejection and transplantation-associated infections; and the effects of both host-intrinsic and -extrinsic factors in transplantation outcomes.

×