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Introduction
Postmenopausal osteoporosis is a common skeletal disease that 
leads to bone fractures and disability. The disease stems mainly 
from the cessation of ovarian function, in which declining estrogen 
levels result in the stimulation of bone resorption and, to a lesser 
extent, bone formation, driving a period of rapid bone loss (1). In 
mice, the effects of estrogen depletion are modeled by ovariecto-
my (ovx). At the cellular level, the central mechanisms by which 
estrogen deficiency induces bone loss are increased osteoclast 
formation (1, 2) and osteoclast life span (3, 4). The primary driv-
ers of increased osteoclastogenesis are enhanced production of the 
immune factors RANKL, TNF, and IL-17 and decreased secretion of 
the RANKL antagonist osteoprotegerin (OPG) (1, 5). While RANKL 
is the ultimate inducer of osteoclast formation, TNF potentiates 
RANKL activity (6, 7) and induces the expansion of Th17 cells (8–
10). Th17 cells are an osteoclastogenic population of CD4+ cells (11, 
12) defined by the capacity to produce IL-17 (13). Th17 cells potent-
ly induce osteoclastogenesis by secreting IL-17, RANKL, and TNF 
along with low levels of IFN-γ (14–16). IL-17 stimulates the release 
of RANKL by all osteoblastic cells, including osteocytes (8, 17), and 
increases the osteoclastogenic activity of RANKL by upregulating 
RANK (18). In addition, IL-17 blunts bone formation (19, 20).

Many cell types express RANKL, including osteoblasts, osteo-
cytes, T cells, and B cells (21–23). Osteocytes are among the most rel-

evant sources of RANKL in estrogen-deficient mice (23). In humans, 
estrogen deficiency is associated with an expansion of T cells 
expressing RANKL, TNF, and IL-17 (21, 22, 24–26). The contributing 
influences of RANKL, IL-17, and TNF in humans are underscored 
by reports showing that menopause increases the levels of these 
immune factors (21, 26–28), while treatment with TNF inhibitors 
prevents the increase in bone resorption that results from estrogen 
deficiency (29). In the mouse, the causal role of T cells and TNF in 
ovx-induced bone loss has been demonstrated in multiple models 
(30–32). For example, ovx- induced bone loss did not occur in mice 
lacking T cell TNF production (6, 30, 33, 34) or lacking the costimu-
latory molecule CD40L (35) as well as mice treated with CTLA4-Ig, 
an agent that transmits an inhibitory signal to T cells (36).

The relevance of Th17 cells and IL-17 for the bone loss 
induced by ovx in mice is demonstrated by the expansion of 
BM Th17 cells and increased production of IL-17 in response 
to ovx (37, 38) and by reports that treatment with anti–IL-17 Ab 
or silencing of IL-17 signaling prevent ovx-induced bone loss 
(39–41). Th17 cells and IL-17 have also been implicated in the 
bone loss induced by inflammation (12, 42) and parathyroid 
hormone (PTH) (8, 43).

In the mouse, Th17 cells are mostly produced and reside in 
the intestinal lamina propria, where their development depends 
on the presence of segmented filamentous bacteria (SFB) (44), 
which are spore-forming, Gram-positive commensal bacteria that 
potently induce differentiation of Th17 cells (45, 46). In humans, 
about 20 nonvirulent gut bacterial strains are known to induce 
Th17 cell differentiation (47, 48).

We reported that germ-free mice are protected against 
the bone loss induced by sex steroid deprivation (38), a find-
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vation of T cells in the lamina propria of the intestinal wall (38). 
Since intestinal T cells have the capacity to migrate to distant 
organs driven by chemokine gradients (50, 51), ovx may cause 
the homing of intestinal T cells to the BM. To directly inves-
tigate the effect of ovx on T cell trafficking, we made use of 
C57BL/6 Kaede mice (52). This strain offers a sensitive means 
for tracking the migration from the gut to anatomically distant 
sites of any leukocyte cell type definable by surface-displayed 
or intracellular markers. Kaede mice ubiquitously express the 
photoconvertible protein Kaede, which permanently changes 
their fluorescence emission from green (518 nm) to red (582 
nm) upon photoactivation with near-UV light (350-410 nm). 
Once photoconverted in the intestine, red fluorescing cells can 
be detected and enumerated by flow cytometry in other organs. 
The photoconversion of intracellular Kaede has no effect on cel-
lular function and on the homing capacity of T cells (53). Here-
after, we will refer to photoconverted cells as KaedeR cells. The 
original colony of Kaede mice established in our vivarium were 
SFB–. To utilize a model in which Th17 cells can expand in the 
gut, we generated SFB+ Kaede mice by gavaging the mice with a 
liquid suspension of stools from mice previously monocolonized 
with SFB (43). Figure 1A shows the intestine of a Kaede mouse 
before and after photoactivation of the dissected organ ex vivo 
by exposure to a 390 nm light for 2 minutes.

To assess the efficiency of the photoconversion in vivo, 
10-week-old female SFB+ Kaede mice were subjected to surgi-
cal laparotomy to access Peyer’s patches (PP) in the distal small 
intestine (SI). Three to four PPs/mouse were photoconverted by 
exposing them to a 390 nm light for 2 minutes. To make sure that 
no other cells were photoconverted, the whole mouse was covered 
with an aluminum foil blanket. Mice were sacrificed immediately 
after the photoconversion, and the relative frequencies of KaedeR 
total T cells, TNF+ T cells, and Th17 cells in the PPs subjected to 
photoconversion and in the BM were measured by flow cytome-
try. This analysis revealed that more than 98% of T cells from PPs 
exposed to near-UV light underwent photoconversion, whereas 
KaedeR cells were undetectable in the BM (Figure 1B). Confirming 
that photoactivation of PPs does not photoconvert bone tissue and 
BM cells, femurs and tibiae harvested from Kaede mice immedi-
ately after PP photoactivation were of a similar green color (Sup-
plemental Figure 1A; supplemental material available online with 
this article; https://doi.org/10.1172/JCI143137DS1). Moreover, 
analysis of BM cells by fluorescence microscopy did not reveal the 
presence of red fluorescing cells in the BM of Kaede mice imme-
diately after PP photoactivation (Supplemental Figure 1, B and C).

Next, 10-week-old SFB+ Kaede mice were subjected to either 
ovx or sham surgery. Two weeks later, all animals were subjected 
to surgical laparotomy and 3 to 4 PPs/mouse were photoactivat-
ed. Mice were sacrificed 24 or 48 hours later and the number of  
KaedeR T cells in PPs and BM measured by flow cytometry. 
Because the measurement of the absolute number of PP cells is 
technically challenging due to variability of the size of the collected 
PP tissue, PP KaedeR cells were quantified only as percentages of 
total cells. Analysis of the cells harvested from the photoactivated 
PPs revealed that sham-operated mice and mice that had under-
gone ovx had a similar relative frequency of PP KaedeR total T cells 
24 to 48 hours after photoactivation (Figure 1C and Supplemental 

ing suggesting the gut microbiome to be the source of antigens 
driving T cell activation in mice that had undergone ovx. We 
further reported that sex steroid deficiency increases gut per-
meability, allowing microbial components to activate T cells 
and expand TNF+ T cells and Th17 cells in the intestinal wall, 
thus increasing the production of TNF and IL-17 in the lami-
na propria of the intestinal wall (38). A link among menopause, 
gut permeability, inflammation, and bone loss has recently 
been confirmed in humans (49). The expansion of intestinal T 
cells and the increase in their production of osteoclastogenic 
cytokines production induced by sex steroid deprivation mir-
rored similar changes in T cell number and cytokine levels in 
the BM (38). This suggests that T cells first become activated 
and expand in the gut in response to microbial stimuli and then 
migrate from the gut to the BM, leading to an expansion of BM 
T cells, enhanced cytokine production, and bone loss. Howev-
er, whether BM T cells implicated in bone loss originate in the 
gut remains unknown.

In this study, we investigated the effects of ovx on the traffick-
ing of T cells from the gut to the BM. We show that ovx increases 
the egress of TNF+ T cells and Th17 cells from the gut to the sys-
temic circulation and their subsequent influx into the BM. More-
over, we show that blockade of T cell egress from the gut or influx 
into the BM prevents the expansion of BM T cells induced by ovx 
and prevents ovx-induced bone loss.

Results
Ovx increases the trafficking of T cells from the small intestine to 
the BM. Ovx increases gut permeability, causing translocation of 
bacterial products such as LPS and flagellin that increase acti-

Figure 1. Ovx increases the trafficking of T cells from the gut to the BM. 
(A) Image of the intestine of Kaede mice before and after ex vivo photo-
conversion of the dissected organ by exposure to a 390 nm wavelength 
light for 2 minutes. (B) Representative flow cytometric analysis of T cells 
harvested from photoactivated (PA) PPs and BM of Kaede mice subjected 
or not subjected to in vivo photoconversion. Plots show the relative fre-
quency of KaedeR total T cells, TNF+ T cells, and Th17 cells. Ten-week-old 
female SFB+ Kaede mice were subjected to surgical laparotomy to access 
the PPs in the distal SI. PP cells were photoconverted by exposing them 
to a 390 nm light for 2 minutes. Mice were sacrificed immediately after 
the photoconversion. (C–E) Relative frequency of KaedeR total T cells, 
TNF+ T cells, and Th17 cells in PPs from sham-operated mice and mice that 
had undergone ovx 24 hours and 48 hours after photoconversion. (F and 
G) Relative and absolute frequency of KaedeR total T cells in the BM of 
sham-operated mice and mice that had undergone ovx 24 hours and 48 
hours after photoconversion. (H and I) Relative and absolute frequency of 
KaedeR total TNF+ T cells in the BM of sham-operated mice and mice that 
had undergone ovx 24 hours and 48 hours after photoconversion. (J and 
K) Relative and absolute frequency of KaedeR total Th17 cells in the BM 
of sham-operated mice and mice that had undergone ovx 24 hours and 48 
hours after photoconversion. For panels C–K, 10-week-old Kaede mice were 
subjected to either ovx or sham surgery. After 2 weeks, mice underwent 
surgical laparotomy and PP cells were photoconverted. Mice were sacrificed 
24 or 48 hours later and the number of KaedeR T cells in PPs and BM 
measured by flow cytometry. n = 6–14 mice per group. Data are expressed as 
mean ± SEM. All data were normally distributed according to the  
Shapiro-Wilk normality test and analyzed by 2-way ANOVA and post hoc 
tests applying Bonferroni’s correction for multiple comparisons. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P< 0.0001, compared with the indicated group.
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Figure 2. Ovx increases the trophism of BM Th17 cells for the BM via a TNF-dependent mechanism. (A) Representative flow cytometry plot and frequency 
of EGFP+ Th17 cells in the BM of WT and Tnf–/– sham-operated mice and mice that had undergone ovx. (B) Relative and absolute frequency of EGFP+ Th17 
cells in the BM of WT and Tnf–/– mice subjected to sham surgery or ovx 2 weeks before adoptive transfer of IL-17A-EGFP+ cells. (C) BM CD4+ T cell EGFP MFI. 
In these experiments, EGFP+CD4+ Th17 cells were injected i.v. into WT and Tnf–/– mice that had been subjected to sham operation or ovx 14 days before the T 
cell transfer. Twenty-four hours after transfer, EGFP+CD4+ T cells (EGFP+ Th17 cells) were enumerated by flow cytometry in BM of recipient mice. (D) Relative 
frequency of BM Vβ14+ Th17 cells in WT and Tnf–/– mice. (E and F) Relative and absolute frequency of BM of total Th17 cells in WT and Tnf–/– mice. (G) BM 
Ccl20 transcript levels in Tnf–/– mice. (H) Relative frequency of BM Vβ14+ Th17 cells in Tcrβ–/– mice reconstituted with WT T cells or Tnf–/– T cells. (I and J) Rela-
tive and absolute frequency of BM of total Th17 cells in Tcrβ–/– mice reconstituted with WT T cells or Tnf–/– T cells. (K) BM Ccl20 transcript levels in Tcrβ–/– mice 
reconstituted with WT T cells or Tnf–/– T cells. n = 5–6 mice per group. Data are expressed as mean ± SEM. All data were normally distributed according to the 
Shapiro-Wilk normality test and analyzed by 2-way ANOVA and post hoc tests applying Bonferroni’s correction for multiple comparisons. *P < 0.05; **P < 
0.01; ***P < 0.001; ****P < 0.0001, compared with the indicated group.
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increase in the BM levels of TNF may upregulate CCL20 expres-
sion by BM cells, causing the chemotactic migration of Th17 cells 
from the gut to the BM. In support of this hypothesis, we found 
that ovx upregulated BM Ccl20 transcripts in WT mice but not in 
Tnf–/– mice (Figure 2G).

To investigate the specific role of the pool of TNF produced by 
T cells, splenic T cells from WT and Tnf–/– mice were transferred 
into Tcrβ–/– mice, a strain lacking αβ T cells. After 2 weeks, a length 
of time sufficient for the engraftment and expansion of donor T 
cells, recipient mice were subjected to sham operation or ovx and 
sacrificed 2 weeks after surgery. Ovx upregulated the frequency 
of BM Vβ14+ Th17 cells, and the relative and absolute frequency 
of total Th17 cells in mice with WT T cells, but not in those with 
Tnf–/– T cells (Figure 2, H–J). Moreover, ovx increased expression 
of Ccl20 in the BM of host mice with WT T cells, but not in those 
with Tnf–/– T cells (Figure 2K). These findings demonstrate that the 
production of TNF by T cells is required for ovx to expand Th17 
cells and upregulate CCL20 expression by BM cells.

S1PR1 induces T cell egress from the SI. T cells express S1P recep-
tor 1 (S1PR1), which promotes lymphocyte egress from intestinal 
lymphoid tissues in response to sensing of circulating S1P (57). 
This suggests that ovx may promote the egress of TNF+ T cells and 
Th17 cells from the intestine through a S1PR1-mediated mecha-
nism. To determine whether ovx promotes the exit of PP TNF+ T 
cells and Th17 from the intestine and does so via S1PR1, SFB+ mice 
received ovx and were treated for 4 weeks with the S1PR1 func-
tional antagonist FTY720, which is an agent that arrests lympho-
cyte exit from PPs and mesenteric lymph nodes without affecting 
lymphocyte function (58, 59). FTY720 did not block the increase 
in PP TNF+ T cells induced by ovx, but it prevented the increase 
in BM TNF+ T cells and BM Tnf transcript levels induced by ovx 
(Figure 3A). Similarly, FTY720 did not alter the capacity of ovx 
to increase PP Th17 cells, but it blocked the increase in the BM of 
Th17 cells, Vβ14+ Th17 cells, and Il17a transcript levels induced by 
ovx (Figure 3B). Together, these findings showed that the egress of 
TNF+ T cells and Th17 cells from the gut and their homing to the 
BM is mediated by S1PR1 signaling.

Attesting to the functional relevance of these effects, mea-
surement of indices of trabecular bone volume and structure by 
in vitro μCT scanning at 4 weeks after ovx revealed that FTY720 
completely prevented the loss of femoral and vertebral trabecular 
volume/total volume fraction (BV/TV), and the changes in trabec-
ular thickness (Tb.Th), trabecular number (Tb.N), and trabecular 
separation (Tb.Sp) induced by ovx (Figure 3, C and D). In addition, 
FTY720 prevented the ovx-induced increase in serum C-terminal 
telopeptide of collagen type I (CTX), a marker of bone resorption, 
and serum osteocalcin, a marker of bone formation (Figure 3E). In 
contrast, FTY720 did not decrease the loss of femoral cortical area 
(Ct.Ar) and cortical thickness (Ct.Th) induced by ovx (Figure 3F), 
indicating that ovx caused cortical bone loss with mechanisms 
unrelated to T cell trafficking.

CCL20 and CXCR3 guide the influx T cell into the BM. Following 
their exit from the intestine, Th17 cells migrate to sites of inflam-
mation guided by the CCR6/CCL20 axis (60). To determine the 
role of CCL20-driven influx of Th17 cells into the BM for the 
mechanism of action of ovx in bone, SFB+ mice underwent ovx or 
sham operation and were treated with a neutralizing anti-CCL20 

Figure 2A). Analysis of KaedeR T cell subpopulations revealed that 
ovx decreased the relative frequency of PP KaedeR TNF+ T cells 
and PP KaedeR Th17 cells at 24 and 48 hours (Figure 1, D and E, 
and Supplemental Figure 2, B and C), indicating that ovx increases 
the egress of TNF+ T cells and Th17 cells from PPs. Analysis of BM 
cells from sham-operated mice revealed that less than 0.5 % of the 
BM hematopoietic cells (CD45+ cells) were KaedeR T cells (Figure 
1F). This was consistent with the fact that, having photoconverted 
only the cells of 3 to 4 PPs/mouse, most of the intestinal T cells with 
the potential to migrate to the BM were Kaede green cells. How-
ever, ovx markedly increased the relative and absolute frequency 
of BM KaedeR total T cells at 24 and 48 hours (Figure 1, F and G). 
Moreover, ovx increased the relative and absolute frequency of BM 
KaedeR TNF+ T cells and Th17 cells at 24 hours, while it increased 
the absolute but not the relative number of TNF+ T cells and Th17 
cells at 48 hours (Figure 1, H–K). Together, these data demonstrate 
that ovx promotes the migration of intestinal total T cells, TNF+ T 
cells, and Th17 cells from intestinal tissues to the BM. The finding 
of an absolute but not relative increase in KaedeR TNF+ T cells and 
Th17 cells at 48 hours may further suggest that additional popula-
tions of cells may accumulate in the BM at 48 hours.

To investigate the hypothesis that an influx of TNF+ T cells in 
the BM and the resulting increased production of TNF are required 
for the homing of Th17 cells to the BM, we conducted experiments 
using Il17a EGFP mice and Tnf–/– mice. Il17a EGFP reporter mice 
possess an IRES-EGFP sequence after the stop codon of the Il17a 
gene, so that EGFP expression is limited to IL-17A–expressing 
cells, thus allowing Th17 cells to be detected by measuring EGFP 
by flow cytometry. Splenic naive CD4+ cells (CD4+CD44loCD62Lhi 
cells), which are EGFP–, were purified from Il17a EGFP mice and 
cultured in Th17 cell–polarizing conditions for 4 days. Th17 cells 
(CD4+EGFP+ cells) were then FACS sorted and transferred into 
WT and Tnf–/– mice that had been subjected to sham operation or 
ovx 2 weeks earlier. One day after T cell transfer, the recipient mice 
were sacrificed and BM Th17 cells (CD4+EGFP+ cells) enumerated 
by flow cytometry. WT mice that had undergone ovx had a higher 
relative and absolute number of EGFP+ Th17 cells in the BM than 
WT sham-operated controls. In contrast, ovx did not increase 
the frequency of BM EGFP+ Th17 cells in Tnf–/– mice (Figure 2, A 
and B). In addition, ovx increased the EGFP mean fluorescence 
intensity of CD4+ T cells in WT, but not in Tnf–/–, mice (Figure 2C). 
These findings demonstrated that ovx increases the recruitment 
of Th17 cells to the BM via a TNF-dependent mechanism.

In mice, most of the Th17 cells produced in the lamina propria 
of the intestinal wall contain the Vβ14 chain in their TCR recep-
tors (54, 55). Accordingly, we found that ovx upregulated the fre-
quency of BM Vβ14+ Th17 cells as well as the relative and absolute 
frequency of the overall population of Th17 cells in WT mice but 
not in Tnf–/– mice (Figure 2, D–F). These findings provide further 
support to the hypothesis that ovx increases the migration of Th17 
cells from the gut to the BM via a TNF-dependent mechanism.

The homing of Th17 cells to the BM is driven by the chemo-
kine ligand CCL20, which is expressed by BM stromal cells 
(43), and by the chemokine receptor CCR6, which is expressed 
by Th17 cells (56). CCL20 is strongly induced by inflammatory 
cytokines, including TNF (50). This suggests that the expansion 
of the BM pool of TNF+ T cells induced by ovx and the resulting 
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Figure 3. Blockade of T cell egress from the intestine prevents the expansion of TNF+ T cells and Th17 cells and bone loss induced by ovx. (A) Effects of 
ovx on the number of PP and BM TNF+ T cells and on the level of Tnf transcripts in mice treated with FTY720. (B) Effects of ovx on the number of PP and 
BM Th17 cells and on the level of Il17a transcripts in mice treated with FTY720. (C) Effects of ovx on BV/TV, Tb.Th, Tb.N, and Tb.Sp in mice treated with 
FTY720. (D) Effects of ovx on spinal BV/TV, Tb.Th, Tb.N, and Tb.Sp in mice treated with FTY720. (E) Effects of ovx on serum CTX levels and serum osteocal-
cin levels in mice treated with FTY720. (F) Effects of ovx on femoral Ct.Ar and Ct.Th in mice treated with FTY720. n = 10 mice per group. Data are expressed 
as mean ± SEM. All data were normally distributed according to the Shapiro-Wilk normality test and analyzed by 2-way ANOVA and post hoc tests apply-
ing Bonferroni’s correction for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, compared with the indicated group.

https://www.jci.org
https://doi.org/10.1172/JCI143137


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

7J Clin Invest. 2021;131(4):e143137  https://doi.org/10.1172/JCI143137

Ab or isotype-matched irrelevant Ab for 4 weeks. CCL20 Ab com-
pletely prevented the increase in BM Th17 cells, Vβ14+ Th17 cells, 
and Il17a transcript levels induced by ovx (Figure 4A). Since Th17 
cells are known to produce TNF, in this experiment, we also deter-
mined the fraction of TNF+IL-17+ cells and found that anti-CCL20 

Ab prevented the increase in this subset of Th17 cells induced by 
ovx (Figure 4B). In contrast, CCL20 Ab did not block the increase 
in BM TNF+ T cells and BM Tnf transcript levels induced by ovx 
(Figure 4C), indicating that CCL20 does not contribute to regulat-
ing the influx of TNF+ T cells into the BM.

Figure 4. Blockade of Th17 cell influx into BM by treatment with anti-CCL20 Ab prevents expansion of Th17 cells and bone loss induced by ovx. (A) 
Effects of ovx on the frequency of BM Th17 cells and Vβ14+ Th17 cells and on the level of Il17a transcripts. (B) Effects of ovx on the frequency of BM 
TNF+IL-17+ T cells. (C) Effects of ovx on the number of BM TNF+ T cells and on the level of Tnf transcripts. (D) Effects of ovx on femoral BV/TV, Tb.Th, Tb.N, 
and Tb.Sp. (E) Effects of ovx on spinal BV/TV, Tb.Th, Tb.N, and Tb.Sp. (F) Effects of ovx on serum CTX levels and serum osteocalcin levels. (G) Effects 
of ovx on femoral Ct.Ar and Ct.Th. Mice were treated with anti-CCL20 Ab or irrelevant (Irr.) Ab. n = 5 mice per group. Data are expressed as mean ± SEM. 
All data were normally distributed according to the Shapiro-Wilk normality test and analyzed by 2-way ANOVA and post hoc tests applying Bonferroni’s 
correction for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, compared with the indicated group.
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Figure 5. Blockade of T cell influx into BM by silencing of CXCR3 prevents expansion of TNF+ T cells and Th17 cells and bone loss induced by ovx. (A) 
Effects of ovx on the number of BM TNF+ T cells and on the level of Tnf transcripts in WT mice and Cxcr3–/– mice. (B) Effects of ovx on the BM cell transcript 
levels of Ccl20 in WT mice and Cxcr3–/– mice. (C) Effects of ovx on the number of BM Th17 cells and on the levels of Il17a transcripts in WT mice and Cxcr3–/– 
mice. (D) Effects of ovx on femoral BV/TV, Tb.Th, Tb.N, and Tb.Sp in WT mice and Cxcr3–/– mice. (E) Effects of ovx on spinal BV/TV, Tb.Th, Tb.N, and Tb.Sp 
in WT mice and Cxcr3–/– mice. (F) Effects of ovx on serum CTX levels and serum osteocalcin levels in WT mice and Cxcr3–/– mice. (G) Effects of ovx on fem-
oral Ct.Ar and Ct.Th in WT mice and Cxcr3–/– mice. n = 5 mice per group. Data are expressed as mean ± SEM. All data were normally distributed according 
to the Shapiro-Wilk normality test and analyzed by 2-way ANOVA and post hoc tests applying Bonferroni’s correction for multiple comparisons. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001, compared with the indicated group.
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ing the expression of the CCR6 ligand CCL20 by BM cells and for 
the homing of Th17 cells to the BM.

T cell–produced TNF is known to contribute to the bone loss 
induced by estrogen deprivation in mice (5, 30) and humans (24, 
25). However, the origins of BM TNF+ T cells have not been inves-
tigated. This study provided evidence that sex steroid deficiency  
expanded TNF+ T cells in the gut and that the increase in BM TNF+ 
T cells caused by ovx was secondary to homing of intestinal TNF+ 
T cells to the BM. TNF+ T cells were required to upregulate CCL20 
in BM cells and chemoattract Th17 cells to the BM. These find-
ings were consistent with the hypothesis that TNF contributes to 
ovx-induced bone loss, not only by potentiating the osteoclasto-
genic activity of RANKL (6, 7), but also by orchestrating the hom-
ing of intestinal Th17 cells to the BM.

Th17 cells play a pivotal role in the bone loss resulting from 
pathologic conditions, such as psoriasis, rheumatoid arthritis, 
periodontal disease, and inflammatory bowel disease (12, 42). In 
addition, Th17 cells have been implicated in the bone loss induced 
by PTH (8, 43) and estrogen deficiency (37–41). While Th17 cells 
contribute to pathologic bone destruction in autoimmune diseases 
and bone diseases, the bone erosion induced by Th17 cells serves 
an important protective role in periodontitis, which is one of the 
most common infectious diseases, where Th17 cell–induced tooth 
loss is critical for eradicating bacteria from infected oral cavities 
and surfaces (63). In addition, IL-17 produced by γδ T cells facili-
tates fracture repair (64).

Under homeostatic conditions, Th17 cells are most abundant 
in the gut, where their induction and accumulation are maximized 
by the presence of SFB in the gut microbiota. Germ-free mice and 
conventionally raised mice lacking SFB have fewer intestinal Th17 
cells and a lower propensity to extraintestinal autoimmune disor-
ders (65, 66); they are protected against the bone loss induced by 
PTH (43). This suggests a direct functional relationship between 
microbiota-induced intestinal Th17 cells and Th17-driven tissue 
injury at peripheral sites.

To directly investigate the effect of ovx on T cell trafficking, 
we made use of C57BL/6 Kaede mice (52). Kaede mice and sim-
ilar strains have been successfully used to track the migration of 
intestinal immune cells, including Th17 cells to the kidney (51), 
mesenteric lymph nodes (67), and the brain (68). Corroborating 
information was provided by injecting i.v. EGFP-Th17 cells and 
measuring their homing to the BM. These experiments revealed 
that ovx increases the tropism of Th17 cells for the BM in a 
TNF-dependent fashion.

A mechanistic finding of this study is that the egress of TNF+ 
T cells and Th17 cell from the SI was dependent on S1PR1. This 
insight was obtained using FTY720, a S1PR1 modulator that arrests 
the exit of all lymphocytes from the intestine to the systemic circu-
lation (58, 59). This drug is currently FDA approved for the treat-
ment of multiple sclerosis. The homing of TNF+ T cells to the BM 
was driven by the chemokine receptor CXCR3, which binds to its 
ligands CXCL9, CXCL10, and CXCL11 (61, 62). These ligands are 
highly expressed at sites of inflammation as well as constitutively  
by BM stromal cells and hemopoietic cells (69–71). The influx of 
Th17 cells into the BM was mediated by the chemokine ligand 
CCL20, which binds to CCR6. This receptor is expressed by Th17 
cells (56, 72). The CCR6/CCL20 axis also drives the recruitment 

Supporting evidence for an essential function of CCL20 and 
the migration of Th17 cells to the BM, treatment with anti-CCL20 
Ab for 4 weeks prevented the loss of BV/TV, Tb.Th, and Tb.N and 
the increase in Tb.Sp in the femur and the lumbar spine, as mea-
sured by in vitro μCT scanning (Figure 4, D and E). Treatment 
with CCL20 Ab prevented the increased serum CTX and osteo-
calcin induced by ovx (Figure 4F), indicating that homing of Th17 
cells to the BM contributes to the acceleration of bone turnover 
induced by ovx. In contrast, anti-CCL20 Abs did not decrease the 
loss of Ct.Ar and Ct.Th induced by ovx (Figure 4G), indicating 
that ovx caused cortical bone loss with mechanisms unrelated to  
Th17 cell trafficking.

While the egress of T cells from intestinal lymphoid tissues 
and their entrance into the bloodstream is driven by S1P/S1PR1 
signaling, the exit from the systemic circulation of TNF-producing 
T cells and their entrance into distant lymphoid organs is depen-
dent on the expression of CXCR3 on T cells (61, 62). To determine 
whether CXCR3 was required for ovx to attract TNF+ T cells to the 
BM, SFB+ Cxcr3–/– mice were generated by gavaging SFB– Cxcr3–/– 
mice purchased from Jackson Laboratory with a liquid suspension 
of stools from mice previously monocolonized with SFB (43). Ten-
week-old female SFB+ Cxcr3–/– mice and WT littermates underwent 
ovx and were sacrificed 4 weeks later. These experiments were 
conducted using SFB+ mice to ascertain whether the recruitment 
of TNF+ T cells to the BM is required for the recruitment of Th17 
cells to the BM. Ovx increased BM TNF+ T cells and Tnf transcripts 
in WT, but not in Cxcr3–/–, mice (Figure 5A). Attesting to the mech-
anistic role of T cell–produced TNF for CCL20 expression, ovx 
increased BM Ccl20 mRNA levels in WT, but it failed to do so in 
Cxcr3–/– mice (Figure 5B). Demonstrating the relevance of the TNF+ 
T cells/CCL20 pathway for the homing of Th17 cells to the BM, ovx 
increased BM Th17 cells, Vβ14+ Th17 cells, and BM Il17a transcripts 
in WT mice, while it did not in Cxcr3–/– mice (Figure 5C).

In keeping with the casual role of TNF+ T cell and Th17 cell 
homing to the BM for the changes in trabecular bone struc-
ture and bone turnover induced by ovx, μCT measurements of 
femurs and lumbar spines harvested 4 weeks after ovx revealed 
that ovx decreased BV/TV and altered Tb.Th, Tb.N, and Tb.Sp in 
WT mice, but not in Cxcr3–/– mice (Figure 5, D and E). Moreover, 
ovx increased serum CTX and osteocalcin levels in WT, but not 
in Cxcr3–/–, mice (Figure 5F). However, ovx decreased Ct.Ar and 
Ct.Th in both Cxcr3–/– mice and WT controls (Figure 5G), con-
firming that ovx caused cortical bone loss through a mechanism 
unrelated to T cell trafficking. Together, the data were consistent 
with the hypothesis that the migration of TNF+ T cells to the BM 
is required for ovx to induce the homing of intestinal Th17 cells to 
the BM and the induction of trabecular bone loss.

Discussion
Cytokines produced by BM T cells play a pivotal role in the loss 
of trabecular bone induced by ovx in mice (5). We report that the 
TNF+ T cells and the Th17 cells involved in ovx-induced bone loss 
originate in the gut and then home to the BM. TNF+ T cells and 
Th17 cells egressed the intestine through an S1PR1-dependent 
mechanism. The influx of TNF+ T cells into the BM was guided by 
the chemokine receptor CXCR3. Migration of TNF+ T cells to the 
BM and production of TNF by T cells were required for upregulat-

https://www.jci.org
https://doi.org/10.1172/JCI143137


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2021;131(4):e143137  https://doi.org/10.1172/JCI1431371 0

sufficient to exert biological effects at distant anatomical sites. 
Moreover, the finding that ovx increased BM cytokine transcript 
levels indicates that cytokines were produced locally.

Although we did not investigate the contribution of intesti-
nal T cell trafficking in other forms of pathologic bone loss, it is 
likely that a similar mechanism might be relevant for the bone 
loss induced by inflammatory bowel disease, a condition charac-
terized by increased gut permeability, intestinal T cell activation 
and expansion, systemic inflammation, and bone loss (75, 76). 
Intestinal T cell trafficking may also be relevant for the bone loss 
caused by lactation, which has the purpose of mobilizing calcium 
from the skeleton. These phenomena are caused by suckling- 
induced hypogonadotropic hypogonadism, which results in low 
estrogen levels, and increased secretion of PTH-related peptide 
(PTHrP) by the breast (77, 78). Since PTH and PTHrP activate 
the same receptor and induce bone loss by similar mechanisms, 
Th17 cells are likely to contribute to the skeletal effects of PTHrP. 
We have reported that PTH promotes the expansion of intestinal 
Th17 cells and their migration to the BM (43). The current study 
demonstrates the relevance of Th17 cell trafficking for the bone 
loss induced by estrogen deficiency. Therefore, homing of intesti-
nal Th17 cells to the BM is likely to be pivotal in lactation-induced 
skeletal calcium mobilization.

In summary the current study reveals that intestinal T cells 
are a proximal target of sex steroid deficiency relevant for trabec-
ular bone loss. The observation that blockade of TNF+ T cells or 
Th17 cell intestinal egress or blockade of their influx in the BM 
prevented ovx-induced bone loss provides proof of principle that 
pharmacological modulation of T cell trafficking may represent a 
therapeutic strategy for postmenopausal bone loss.

Methods
Mice and in vivo procedures. SFB+ C57BL/6 mice were purchased from 
Taconic Biosciences. SFB– C57BL/6 mice, Tnf–/– mice (B6.129S6- 
Tnf<tm1Gkl>/J), Il17a-EGFP knockin mice (C57BL/6-il17a< 
tm1Bcgen>/J), Tcrβ–/– mice (B6.129P2-Tcrb<tm1Mom>/J), and Cxcr3–/–  
mice (B6.129P2-Cxcr3<tm1Dgen>/J) were purchased from The Jack-
son Laboratory. Kaede mice (B6.Cg-c/c Tg[CAG-tdKaede]15Utr) were 
purchased from RIKEN Bioresource Research Center. SFB+ JAX mice 
and SFB+ Kaede mice were generated by oral gavaging SFB– mice 
with a liquid suspension of fecal pellets collected from SFB mono- 
associated mice, as previously described (44). SFB positivity was ver-
ified by fecal DNA extraction using the QIAamp DNA Stool Mini Kit  
(QIAGEN) and subsequent quantitative PCR (qPCR) using an estab-
lished protocol that used primers that are specific for the SFB 16S 
rRNA gene: 5′-GACGCTGAGGCATGAGAGCAT-3′, forward; and 
5′-GACGGCACGGATTGTTATTCA-3′, reverse; and total bacterial  
16S rRNA, 5′-GTGCCAGCMGCCGCGGTAA-3′, forward, and 
5′-GGACTACHVGGGTWTCTAAT-3′, reverse. (79). All mice used at 
Emory University were shipped to the same room in the same vivar-
ium within the Whitehead Biomedical Research Building. All mice 
were housed under specific pathogen–free conditions and were fed 
γ-irradiated 5V5R mouse chow (Purina Mills) and autoclaved water ad 
libitum. The animal facility was kept at 23°C (±1 °C) with 50% relative 
humidity and a 12-hour light/12-hour dark cycle. All mice were accli-
matized within our facility for at least 3 days before experimentation. 
Sham operation and ovx were performed at the age of 10 weeks using 

of intestinal Th17 cells to inflamed kidney (51) and the migration 
of intestinal Th17 cells to the BM induced by PTH (43).

Earlier studies from our laboratory disclosed that the gut 
microbiota is required for estrogen deprivation to induce trabec-
ular, but not cortical, bone loss (38). Mechanistically, ovx was 
found to increase gut permeability, a phenomenon that results 
in the expansion and activation of TNF+ T cells and Th17 in the 
gut and the BM (38). Interestingly, while in conditions of normal 
gut permeability, the presence of SFB in the gut microbiota is 
required for Th17 expansion in mice, in mice that had undergone 
ovx, enhanced gut permeability and the resulting increased trans-
location of bacteria and bacterial products led to intestinal Th17 
expansion even in the presence of SFB negative microbiota. This 
hypothesis is supported by the finding of the current study and 
by earlier reports from our laboratory that sex steroid deficiency  
induces bone loss in conventionally raised mice from Jackson 
Laboratory, which possess a SFB– microbiota (33, 35) but not in GF 
mice, which lack bacterial products translocation (38).

The earlier finding that both intestinal and BM Th17 cells are 
increased 2 weeks after ovx (38) suggests the possibility that the 
intestine was the source of the T cells that accumulate in the BM 
after ovx, but the origin of these cells had remained unknown. The 
current investigation provided direct evidence that ovx increased 
gut/BM T cell trafficking. In fact, our data showed that blockade 
of T cell exit from the gut or blockade of their influx into the BM 
prevented the expansion of TNF+ T cells and Th17 cells in the BM, 
a finding that provided pivotal support to the hypothesis that the 
T cells implicated in ovx-induced bone loss originate in the gut. 
Further evidence of the intestinal origin of the Th17 cells involved 
in ovx-induced bone loss was the finding of the expansion of  
intestinal-derived Vβ14+ Th17 cells in the BM of mice that had 
undergone ovx. Attesting to the mechanistic relevance of T cell traf-
ficking, blockade of the egress of TNF+ T cells and Th17 cells from 
the gut or their influx into the BM prevented the loss of trabecular 
bone and the increase in bone turnover induced by ovx. In contrast, 
cortical bone loss was unrelated to T cell trafficking, a finding con-
sistent with the lack of involvement of the microbiota and T cells 
in cortical bone loss (38). Direct effects of estrogen on bone cells, 
including induction of osteoclast apoptosis (3, 4) and inhibition of 
osteoblast apoptosis (73) are likely to account for the loss of cortical 
bone induced by ovx. Thus, our results identified the intestine as a 
proximal target relevant for some of the skeletal effects of ovx.

The findings that ovx increased BM Tnf and Il17a transcript 
levels were consistent with the hypothesis that TNF+ T cells and 
Th17 are first produced in the gut in response to the microbiota 
and then homed to the BM, where they contribute to increasing 
the overall levels of BM TNF and IL-17A. However, we cannot con-
clusively exclude the possibility that ovx may have also increased 
the production of TNF and IL-17A by resident BM lineages that 
were activated by microbial metabolites produced in the gut, 
which then diffused to the BM (74).

In addition, we cannot entirely discount the possibility that 
cytokines produced in the gut may have reached the BM via the 
systemic circulation and contributed to the bone wasting induced 
by estrogen deficiency. Overall, a major effect of cytokines pro-
duced in the intestine is unlikely because, in mice that have under-
gone ovx, intestinal TNF and IL-17 do not reach concentrations 
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Technologies). These cells were injected (5 × 106 cells per mouse) 
i.v. into Tcrβ–/– recipient mice 2 weeks before sham operation or ovx. 
Successful T cell engraftment was confirmed by flow cytometry of the 
spleens of the recipient mice harvested at sacrifice.

Flow cytometry. Flow cytometry was performed on a FACSym-
phony A5 (BD Biosciences), and data were analyzed using FlowJo 
software (Tree Star). For cell-surface staining, cells were stained 
with anti-mouse purified CD16/32 (Fc blocking Ab, clone 93, cat-
alog 101302), BV 510-CD45 (clone 30-F11, catalog 103138), BV 
421-TCR-β (clone H57-597, catalog 109230), AF 700-CD3 (clone 
17A2, catalog 100216), PerCP/Cy5.5-CD4 (clone RM4-5, catalog 
100540), BV 711-CD8 (clone 53-6.7, catalog 100748) (BioLegend), 
BUV395-CD45 (clone 30-F11, catalog 564279), and FITC-Vβ14 T 
cell receptor (Clone 14-2, catalog 553258) (BD Biosciences). The 
live cells were discriminated by the Zombie NIR Fixable Viability 
Kit (BioLegend) or the LIVE/DEAD Fixable Yellow Dead Cell Stain 
Kit (Thermo Fisher). For intracellular staining, cells were incubated 
with cell activation cocktail (BioLegend) in the presence of Mon-
ensin Solution at 37°C for 12 hours. Anti-mouse PE or APC-IL-17A 
(clone eBio17B7, catalog 12-717 7-81 or 17-7177-81) (Thermo Fisher) 
and APC-TNF (clone MP6-XT22, catalog 554420) (BD Biosciences) 
were added after cell fixation and permeabilization with Intracellu-
lar Fixation & Permeabilization Buffer Set (Thermo Fisher).

μCT measurements. μCT scanning and analysis of the distal femur 
and spine were performed as reported previously (8, 83, 84) using a 
Scanco μCT 40 scanner (Scanco Medical). Femoral trabecular and 
cortical bone regions were evaluated using isotropic 12 μm voxels. 
Spinal trabecular bone was evaluated using isotropic 16 μm voxels. 
For the femoral trabecular region, we analyzed 70 slices starting 
8 slices below the distal growth plate. Femoral cortical bone was 
assessed using 80 continuous CT slides located at the femoral mid-
shaft. Measurements of spinal trabecular bone contours along the 
periosteal surfaces were drawn encompassing 50 slices of the L4 ver-
tebra, starting at the beginning of trabecular bone within the spinal 
body, as described (38). X-ray tube potential was 70 kVp, and integra-
tion time was 200 ms. We used the thresholding approach described 
by Bouxsein et al. (85), which is recommended by Scanco, the  
mCT-40 manufacturer, and involves a visual inspection and compari-
son of preview and slice-wise gray-scale 2D images. The same thresh-
old value was used for all measurements.

Bone turnover marker measurement. Serum CTX and osteocalcin 
were measured by rodent-specific ELISA assays (Immunodiagnostic 
Systems).

Real-time RT-PCR and primers. Total RNA was isolated using 
TRIzol reagent (Thermo Fisher Scientific) and the DNase Max Kit 
(QIAGEN) according to the manufacturer’s directions. For all RNA 
samples, cDNA was synthesized with random hexamer primers 
(Roche) and AMV reverse transcriptase (Roche). The expression 
levels of murine Il17a, Tnf, and Ccl20 were measured in whole BM 
cells by real-time PCR. Changes in relative gene expression between 
sham and ovx groups were calculated using the 2–ΔΔCT method with 
normalization to 18S rRNA. Primer sequences used were as follows: 
Il17a, 5′-TGACGCCCACCTACAACATC-3′, forward, and 5′-CAT-
CATGCAGTTCCGTCAGC-3, reverse; Tnf, 5′-AACTCCAGGCG-
GTGCCTAT-3′, forward, and 5′-TGCCACAAGCAGGAATGAGA-3′, 
reverse; Ccl20, 5′-GCCTCTCGTACATACAGACGC-3′, forward, 
and 5′-CCAGTTCTGCTTTGGATCAGC-3′, reverse; and 18s rRNA, 

methods previously established in our laboratory (38, 80, 81). The suc-
cess of ovx was verified by measuring the uterus weight at sacrifice.

FTY720 treatment. The S1PR1 functional antagonist FTY720 
(2-amino-2-[2-(4-octylphenyl) ethylpropane-1,3-diol) was added to 
the drinking water at 5 μg/mL as described by Krebs et al. (51). FTY720 
treatment was initiated 1 day before ovx and continued until sacrifice. 
Water containing FTY720 was changed weekly.

In vivo anti-CCL20 Ab treatment. Rat anti-CCL20 Ab (clone 
114908, R&D Systems, catalog MAB7601) or isotype control (clone 
43414, R&D Systems, catalog MAB005) were injected i.p. at 50 μg per 
mouse 1 day before ovx and every other day thereafter until sacrifice.

Preparation of PP and BM single cell suspension. For PP cell isolation, 
the SI was removed and flushed of fecal content. PPs were excised and 
collected in 1 mL cooled RPMI 1640. PPs were dissociated using the 
plunger of a 2.5 mL syringe and gently forced through a 70 μm cell strain-
er placed over a 50 mL tube. A single cell suspension was used for flow 
cytometric analysis. For BM cell isolation, pelvic bones were flushed with 
PBS and BM cells were collected. RBC lysis was performed twice to elim-
inate all the red blood cells from BM. Single cell suspension of BM cells 
was used for analysis by flow cytometry, as previously described (43, 82).

Kaede mice cells photoconversion. Kaede mice express a photocon-
vertible fluorescence protein that changes from green (518 nm) to red 
(582 nm) upon exposure to near-UV (350-410 nm) light. Ten-week-
old female SFB+ Kaede mice were subjected to sham operation or ovx. 
Fourteen days after ovx or sham operation, all animals underwent 
surgical laparotomy, during which the caecum and distal SI were evis-
cerated and the 4 SI PPs most proximal to the caecum were identified 
and illuminated with 390 nm wavelength light for 2 minutes each. 
The caecum and distal SI were reinserted in the abdominal cavity, 
and the abdominal wall was closed. Aluminum foil was used to protect  
tissue other than target PPs from light during exposure. Either 24 or 48 
hours after photoconversion, mice were sacrificed, and PP cells were 
collected. A single cell suspension was prepared and analyzed by flow 
cytometry. BM cells were also collected at sacrifice and single cell sus-
pension prepared. BM KaedeR total T cells were enumerated by flow 
cytometry by analyzing whole BM cells. Since the number of BM TNF+ 
T cells and Th17 cells was low, BM cells were enriched for T cells or 
CD4+ T cells by positive immunomagnetic sorting using mouse CD3ε 
MicroBeads (Miltenyi Biotec) or mouse CD4 (L3T4) MicroBeads 
(Miltenyi Biotec). These enriched populations were then utilized for 
intracellular staining and flow cytometric enumeration of BM TNF+ T 
cells and Th17 cells.

T cell transfers. Il17a-EGFP knockin mice (C57BL/6-IL17atm1 
Bcgen/J) express EGFP as a marker of IL-17A activity. Naive CD4+ 
T cells (CD4+CD44loCD62Lhi cells) were isolated from the spleen of 
Il17a-EGFP mice using the EasySep Mouse Naïve CD4+ T Cell Isola-
tion Kit (STEMCELL Technologies). EGFP– naive CD4+ T cells were 
cultured under Th17 polarizing conditions for 4 days using the Mouse 
Th17 Cell Differentiation Kit (R&D Systems) to generate EGFP+CD4+ 
Th17 cells. EGFP+CD4+ live Th17 cells were FACS sorted by a FACSAria  
II (BD Biosciences) and injected (1 × 106 cells per mouse) i.v. into  
SFB– JAX WT and Tnf–/– recipient mice, which had been subjected to 
sham operation or ovx 14 days before the T cell transfer. One day after 
transfer, the relative and absolute frequency of EGFP+CD4+ T cells in 
the BM of recipient mice was determined by flow cytometry.

WT and Tnf–/– spleen T cells were purified by negative immunose-
lection using the EasySep Mouse T Cell Isolation Kit (STEMCELL 
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